Sparse recovery via Orthogonal Least-Squares under presence of Noise

نویسندگان

  • Abolfazl Hashemi
  • Haris Vikalo
چکیده

We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a m-dimensional k-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algorithm. In addition, This framework is employed to provide probabilistic guarantees for the case that the coefficient matrix is drawn at random according to Gaussian or Bernoulli distribution where we exploit some concentration properties. It is shown that under certain conditions, OLS recovers the true support in k iterations with high probability. This in turn demonstrates that O (k logm) measurements is sufficient for exact recovery of sparse signals via OLS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sparse Recovery Pursuits with Least Squares

We present a new greedy strategy, with an efficient implementation technique, that enjoys similar computational complexity and stopping criteria like OMP. Moreover, its recovery performance in the noise free and the Gaussian noise cases is comparable and in many cases better than other existing sparse recovery algorithms both with respect to the theoretical and empirical reconstruction ability....

متن کامل

Joint Compressive Sensing Framework for Sparse Data/channel Estimation in Non-orthogonal Multicarrier Scheme

Many wireless channel behavior exhibits approximate sparse modeling in time domain, therefore compressive sensing (CS) approaches are applied for more accurate wireless channel estimation than traditional least squares approach. However, the CS approach is not applied for multicarrier data information recovery because the transmitted symbol can be sparse neither in time domain nor in frequency ...

متن کامل

Signal Recovery from Inaccurate and Incomplete Measurements via Regularized Orthogonal Matching Pursuit

We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...

متن کامل

Least Absolute Deviations Method For Sparse Signal Recovery

We consider a problem in signal processing which deals with the recovery of a high-dimensional sparse signal based on a small number of measurements. Our goal is to apply the least absolute deviations (LAD) method in an algorithm that would essentially follow the steps of the orthogonal matching pursuit (OMP) algorithm that has been used mostly in this setting. OMP can recover the signal with h...

متن کامل

[Proceeding] Fast and Robust EM-Based IRLS Algorithm for Sparse Signal Recovery from Noisy Measurements

In this paper, we analyze a new class of iterative re-weighted least squares (IRLS) algorithms and their effectiveness in signal recovery from incomplete and inaccurate linear measurements. These methods can be interpreted as the constrained maximum likelihood estimation under a two-state Gaussian scale mixture assumption on the signal. We show that this class of algorithms, which performs exac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.02554  شماره 

صفحات  -

تاریخ انتشار 2016